

Performance Planning and Troubleshooting
for CMS

Table of Contents
Production will insert TOC here and it will be based on Heading 4.

Introduction
Getting the best performance from your Microsoft Content Management Server 2002
(MCMS) Web site is an important strategy for getting the most out of your investment.
Good performance not only makes for a better experience from your Web site, but also
reduces hardware costs by using your servers as efficiently as possible.

This white paper describes the various ways in which MCMS can be optimized for
performance. The first sections describe the most important architectural features of
MCMS to understand for performance optimization. The next sections describe
performance optimization strategies based on your role: Web developer, IT
administrator, or site architect. Finally, the troubleshooting section demonstrates how
to diagnose and fix an underperforming MCMS site.

Who should read this white paper?

This white paper is aimed at site architects, IT administrators, and Web developers who
are using or planning an MCMS Web site. Site architects will learn how to structure the
site and network, identify bottlenecks, and scale the infrastructure to accommodate
traffic demands. IT administrators will learn how to optimize performance of the MCMS
servers and related applications like SQL Server and Internet Information Server. Web
developers will learn how to build templates and design navigation for best
performance.

When should you consult this white paper?

This white paper is a valuable resource when planning your Web site and building a trial
version of the site. It sets out guidelines that will help you design your trial site and its
pages with performance in mind. Through the use of good design practice early, you
can avoid a costly redesign later when you take your site to production. Designing for
performance from the beginning is also important if you plan to do transaction cost
analysis on your site using the Transaction Cost Analysis for MCMS 2002 <link> white
paper. Transaction cost analysis (TCA) can help you determine the precise hardware
your Web site requires to meet its performance targets for the expected traffic load. To
do TCA effectively, you must have the major structure of the Web site in place,
including the site and page design.

See these documents for more information on developing Web sites with MCMS:

MCMS Product Documentation

WoodgroveNet Sample Site

MCMS Product Overview

The MCMS site structure

A well-structured MCMS environment
is tiered, allowing for the separation of
development, authoring, staging and
testing, and production. Each tier
consists of at least one MCMS server
and a SQL Server. This tiered
architecture reflects the organization
or process in which an MCMS Web site
is designed, assembled, and published
to the Web.

In the development tier, Web
developers create templates and
program navigation bars.

In the authoring tier, business users
use the templates to create content
and take it through an approval
process to publish the content to the
site. Approved content is assembled in
the authoring server.

The staging tier, if necessary, allows
content to be tested before publishing.
This stage is also used for load testing.

The production tier serves incoming
page requests. Generally, the
production tier consists of several
MCMS servers supported by a SQL
Server. The production tier may even
be a web farm with multiple clusters of
MCMS servers, with each cluster supported by its own SQL server. A load balancer
handles incoming requests and distributes them among the MCSM servers.

Serving up a page
One of the strengths of
MCMS is that it responds to
page requests by
dynamically assembling the
Web pages it serves. That is,
it is not limited to a list of
static Web pages built in
advance. Instead, it can
respond to each request by
assembling the required
Web page, which means that
Web sites can be filled with
dynamic content targeted at
individual users.

However, this flexibility
comes at a certain cost: it
can take more time to
assemble a new page than
to simply serve up an
existing page. MCMS
compensates for this by
using a sophisticated system
of memory caching that
allows it to have the
performance of a static page
server, while maintaining
the flexibility of dynamic
page assembly. Many of the
strategies for optimizing
MCMS performance revolve
around caching and page
assembly, so it is worthwhile
to review how an MCMS
server actually serves up a
page. The diagram at right
shows the steps that a
server goes through when it
receives a request for a URL.

1. A page request arrives through Microsoft Internet Information Services (IIS) and is
trapped by the MCMS Internet Server API (ISAPI) filter, which takes apart the URL
and finds the corresponding posting. It follows the posting to the template file, and
then constructs a new URL using the ASPX template file. The new URL contains
several query string parameters, including the globally unique identifier (GUID) of
the posting. This transformed URL is then passed back to IIS, where processing
continues.

2. IIS passes the transformed URL into the ASP.NET DLL, where a variety of processing
is performed. This includes the required authentication processing, caching, when
enabled, and processing that establishes the MCMS context in which the ASPX page
will be executed. Authentication and cache processing are not shown here for the
sake of simplicity.

3. MCMS instantiates and initializes a CmsHttpContext object that serves as the MCMS
object model entry point for the ASPX template file that is executed in later steps.

4. Initialization continues with the instantiation and initialization of the Posting object
that corresponds to the requested page. Recall that the GUID of the current posting
was passed as a query string parameter in the transformed URL. Information about
the posting is read from the Content Repository.

5. Initialization continues with the initiation and initialization of the Template object for
the template upon which the requested page is based. Information about the
template is read from the Content Repository.

6. Execution of the ASPX template file begins. The MCMS context established in the
previous steps is accessible to code in the ASPX template file using the current
property of the CmsHttpContext object as in the following example:

CmsHttpContext.Current.Posting
The ASPX template file typically contains placeholder controls, but it can also contain
any other HTML, script, and/or non-MCMS controls, as appropriate.

7. Assuming that the template file contains one or more placeholder controls, when
these controls execute, they instantiate and initialize Placeholder objects that
contain the actual content to be displayed in the controls. Information about the
Placeholder object(s), including the actual placeholder content, is read from the
Content Repository.

8. Making the same assumption about the presence of placeholder controls in the
template file, these controls instantiate and initialize the PlaceholderDefinition
objects that correspond to the Placeholder objects. These objects contain
configuration and constraint information about the content to be displayed in the
controls. Information about the PlaceholderDefinition object(s) is read from the
Content Repository. Note that these objects appear dimmed in the figure, indicating
that they do not play much of a role in the process of displaying a requested page
(as opposed to what occurs when the content on a page is authored).

9. During the course of the execution of the template page, the HTML that constitutes
the resulting Web page is emitted and sent to the user.

Basic principles in MCMS performance
The first principal for good performance is to ensure that your MCMS servers have
sufficient memory to store the working set of pages in output or fragment cache.
Because cached pages always serve fastest, increasing the memory available to the
output and fragment caches is always the first path to improving performance.

However, pages may not always be present in output or fragment cache: the first time
a page is requested, it must be assembled from templates, placeholder data, and
resources. Factors such as access patterns and update frequency can also reduce cache

effectiveness. Therefore, the next route to improving performance is to speed the
assembly of pages. The best way to speed page assembly is to ensure that there is
sufficient memory available for the node cache, which stores the MCMS objects, such as
templates and placeholder data that are required to assemble the pages.

Next, processor capacity is important. Ensure that there is enough CPU capacity
available to efficiently assemble pages using data from node cache, disk cache, and the
SQL server database.

The size of the disk cache, which stores resources, can also speed page assembly. A
sufficiently large disk cache can reduce or eliminate the need to go to the SQL Server
database for resources.

Finally, you can improve performance by reducing the resource and processing
demands that your page and site design pose. Template design, navigation, and site
architecture considerations all play a role. Some template designs will increase the
processing burden. A too-complex site design can do the same. Certain kinds of
content, or content targeted at specific users will also slow down performance. Because
every site offers different content for different users, the performance challenges will be
different for each site.

The purpose of performance optimization is to find the best configurations and
structures to allow your site to achieve the best performance possible.

Setting performance targets
For the purposes of planning and designing a Web site, performance targets are
generally expressed in terms of performance metrics: pages per second, transactions
per second, guest sessions per second, and so forth. However, determining just what
those targets will be can often be a bigger problem than choosing a counter to measure
them. How many users will there be? What response time do they find acceptable?
What kind of information will they access?

For projects involving the migration of an existing site to MCMS 2002, the problem is
relatively easy because traffic measures can be taken of the old site. For new, growing,
or substantially redesigned sites, the problem is more difficult because historical data is
unavailable or inapplicable. For every site, however, performance targets eventually
come from the business requirements of the site.

Business requirements can be vague and inexact, but they are an essential starting
point for capacity and performance planning. The challenge is to translate business
requirements into measurable numbers.

There is no quick formula to translate business requirements into throughput numbers.
However, consider the following questions when formulating your performance targets:

• What will be the traffic patterns for your site? That is, will your site have constant,
steady traffic, or will there be times when traffic will spike? If your site offers movie
trailers, for instance, you can expect a spike in traffic when a new trailer comes out.
Therefore, you should design your Web site for these peak periods, as opposed to
the quiet periods in between.

• What is the longest latency you can tolerate? Business requirements will often call
for instant response time, but this is not generally possible or practical. Instead, set

an upper limit for the average wait between request and response, in seconds. As a
general rule, latency times above 5 seconds will start to discourage users.

• What are your availability requirements? If your site must be running 99.99 percent
of the time, you will have to design a site with redundancy using clustered web
servers or that has high failover capabilities. This may translate into multiple
servers or multiple clusters of servers.

• Will your content be highly personalized? Highly targeted Web content will perform
differently from generic content.

There are many other questions to consider when determining the performance targets
for a site. For more information, see the link to the user profile white paper in the
“Testing your site” section below.

Site development
Site development refers to the designing and programming of Web page templates and
navigation, and is usually performed by ASP developers. Web developers can have a
large impact on the performance of a Web site. Templates that have been optimized for
performance will produce Web pages that can be quickly assembled. Efficiently coded
navigation bars will render quickly and not place too much demand on the server.

ASP versus ASP.NET
One of the major changes in MCMS 2002 from MCMS 2001 is support for ASP.NET.
MCMS 2001 supported only ASP page development. ASP.NET offers several advantages
over ASP:

• ASP.NET comes with its own caching mechanism, referred to as output cache.
Programmers can have control over what is cached and how long pages or parts of
the page are cached to optimize the performance.

• You can design and program templates in MS Visual Studio .NET, which provides a
WYSIWYG environment, makes adding controls easy, and has a fully supported
debugging environment.

• You can program templates in Visual Basic .NET, C#, or JScript.

• ASP.NET pages can take advantage of the .NET Framework. For more information
on the .NET Framework, see the Microsoft .NET Framework Web site.

All these features will make it easier for you to optimize your ASP.NET pages for
performance. Therefore, new pages should always be developed using ASP.NET instead
of the older ASP.

Placeholders and template design
A template is an MCMS object that is stored in the Content Repository and serves as the
design for a particular set of pages. These pages are said to be based on that template.
Templates encapsulate the placeholder and custom property definitions, and identify
the template file (which contains the executable code and controls) for their pages.

The key feature of a template is the placeholder. Placeholders are the areas on the
template where text, images, or rich media may be placed. Placeholders are what make
a template a template, but if mismanaged they can degrade the performance of the
site.

There are two basic strategies for managing placeholders: limit their number, and limit
their size.

Limit the number of placeholders

The more placeholders there are on a template, the more objects and data have to be
retrieved to assemble the page, and the more processing a page requires. In some
ways, you can trade off the number of placeholders against the number of templates. It
may be possible, for instance, to have a single main template from which all pages are
derived through the use of complicated design of the templates with multiple
placeholders. However, this arrangement will place the maximum burden on the server.

As you can see from the chart below, the page-per-second throughput tapers off when
more placeholders are introduced into the template.

The slope of the curve will vary depending on size and type of placeholder you add. As
a general rule, limit the number of placeholders on a template to fewer than 100. For
best performance, consider limiting the number of placeholders to 30 or less to avoid a
decline in throughput.

Limit the size of data in placeholders

As noted earlier, the size of the data contained by the placeholders in a template also
has a large impact on performance. As images grow bigger and the number of lines of
content of a template increases, performance drops off dramatically.

Again, you can trade off certain parameters in your template design to get the best
performance. For instance, if a placeholder has a large amount of content (1000 lines or
more) you can split up that content into multiple placeholders. While this will increase
the total number of placeholders, the individual placeholders will be smaller. You will
have to find the right balance between these two parameters to achieve the best
performance.

Of course, the size of other types of placeholders should always be restricted as much
as possible, particularly images and rich media such as animation and video. But these
size/performance trade-offs must be made with any Web site. The chart below shows
how throughput falls off as the size of placeholder data increases. (Note that the
horizontal axis is logarithmic to make this fall-off more evident.)

Navigation
Navigation controls, like tables of contents or navigation trees, have a large impact on
MCMS performance because they are generally used on every page. A badly designed
navigation control can be one of the reasons behind high latency issues in your final
pages. Therefore, a little time spent optimizing your navigation code can have an
enormous impact on overall Web site performance.

There are two aspects to a well-designed navigation control: rendering only what is
necessary and making the site-level navigation as generic as possible.

Tree-style navigation controls can be very useful for large sites with highly organized
content, like technical support sites. However, tree navigation controls can require
significant time if the entire tree is computed all at once. A better solution is to load and
compute only that part of the tree required for that particular page. As the user
navigates through the content, the remaining part of the tree required can be identified

or computed and loaded as necessary. In this way, computing the tree control as the
user moves through the navigational controls eliminates the wait caused by computing
the entire tree at the startup. It can also reduce the overall loading time as the parts of
the tree that are not used will not have to be computed and loaded. Preloading the
entire tree may be easier for a small site; however this technique does not scale and
can cause serious performance degradation in deep sites. The incremental loading
technique reduces initial overhead.

Another key strategy to minimizing the performance cost of navigation is to use the
same navigation controls site-wide. Although this can result in larger tree controls, it
allows you to take advantage of the output cache or fragment cache, which can
outweigh the increase in size of the control. When a common navigation control is used
on many or all the pages on a site, it can be kept in the cache to speed up page
assembly. The more the navigation is customized—for instance, on a user-level basis—
the less cost-effective it will be to cache it. Try to design your site around very little or
no targeted customization in the navigation tree.

Authentication
Authentication is required when the site has security concerns or when content is
personalized and targeted to particular users. Targeting content requires that users be
identified and authenticated, and this authentication carries a certain performance
burden.

The overall performance of MCMS can depend on the type of authentication used. Web
sites configured for guest access—that is, no authentication—have been shown to
perform the best. Sites that require users to log in when they use the site—manual
authentication—perform up to 30 percent slower than those that allow users access as
guests. You should, of course, consider these results when building your site. A more
radical solution would be to keep targeted content and generic content on different sites
entirely.

If you have a guest-access-only site, you can improve the performance of the system
by removing the MCMS Authorization module. In your ASP.NET sites, this can be done
by removing the authorization module from the Web.config file. See “Configuring
Internet Sites” for more information.

The chart below shows that performance gains of up to ten percent may be obtained by
removing the authorization module. As you can see, the performance improvement is
significant only on servers with a low number of processors and decreases as the
number of processors increases.

Caution: You should only remove the authorization module in sites that contain content
for guest access only. If the site contains sensitive data meant only for registered (non-
guest) users, this data may become accessible to guest users if the authorization
module is removed.

Network and hardware management
Content Management Server has been built to run high quality, high performance, high
volume Web sites. To achieve that performance, however, it is crucial that the
machines that run MCMS have enough resources to support the traffic, and that these

resources are optimally used. Server optimization will allow you to meet your
performance goals without over-investing in hardware.

There are many aspects to server management. Cache management can have the
biggest immediate impact on performance, but improper disk management can also
slow down performance. Tasks like content deployments and routine housekeeping,
such as background processing, can leave the server underperforming periodically, and
must be minimized or scheduled for off-peak hours. Network latency from various
sources will always affect performance. If your total system resources are not enough
to handle the traffic demands, you may have to scale up your servers or scale out your
server farm. Finally, MCMS relies on SQL Server 2000 and Internet Information Server
to store and serve pages; inappropriate configurations in these applications can reduce
your site’s performance.

These aspects of network and hardware management are covered in the sections
below.

Cache balancing
As described in the “Serving up a page” section above, there are four different kinds of
cache in Content Management Server: output cache, fragment cache, node cache, and
disk cache. Three of these caches—output, fragment, and node—reside in memory.
Disk cache obtains resources from MCMS resource galleries and stores them
temporarily on the hard disk.

Because the output, fragment, and node caches will all compete for memory resources,
you must balance their resource demands to optimize performance. Of these, node
cache can be configured using the Server Configuration Application (SCA), whereas
output cache can be manipulated using cache control features or ASP.net. Each of these
cache types is described below.

ASP.NET output cache
Output is the first cache that the ASP.net checks for incoming MCMS page requests. The
output cache is stored in RAM, and the content it stores can be served up at a rate of
hundreds of pages per second.

This cache is actually part of the ASP.NET Framework and is managed by the
Framework. Therefore, output cache is only available for ASP.NET pages, and not ASP
pages. It stores static chunks of HTML, either fragments of pages or whole pages, and
is usually implemented on template files or user controls on which postings are based.
You must enable output caching for each template and control you wish to store in the
cache. For details on how to enable output caching, consult the MCMS SDK
documentation and ASP.NET documentation.

Because output caching increases performance so dramatically, all MCMS sites using
ASP.NET should make use of this cache where appropriate. Increasing the amount of
content that is served out of this cache is often the single biggest performance
enhancement that you can make to an MCMS site.

Note that postings and objects which have been output cache-enabled are added to the
output cache the first time they are requested. They remain in cache until their duration
expires (see the “Caching concerns” section below) or the cache is flushed (see the
“Content updates” section below).

Fragment cache
The fragment cache is similar to output cache in that MCMS uses it to store page
components or whole pages in RAM. The main difference between output cache and
fragment cache is that fragment cache is not part of the ASP.NET Framework, but is
created and managed directly by MCMS. This means that the fragment cache can be
used to cache only ASP pages.

The other major difference between output caching and fragment caching is in the way
the caches are built and flushed. While the output cache is built up as pages and
resources are requested, the entire fragment cache is loaded into memory at once. And
while the output cache gets flushed when content is updated, the fragment cache does
not.

As a rule, fragment caching is used only with “guest” content. Fragment caching user-
specific content requires a great deal of care to ensure that sensitive information is not
accidentally revealed.

CMS node cache
If a requested page is not available in the output or fragment caches, MCMS will have
to assemble the page from its constituent parts: templates, resources, and placeholder
data. MCMS uses node cache and disk cache (described below) to assemble pages.
Node cache stores internal MCSM data such as channels, templates, resource metadata,
template galleries, and resource galleries, as well as the placeholder data themselves.
The internal MCMS data provides the roadmap to allow MCMS to locate the requested
resources in disk cache.

Because the node cache plays such a central role in page assembly, increasing the
amount of memory available to node cache is an important part of improving MCMS
performance. You can set the size of this cache through the SCA.

Disk cache
The disk cache resides on the MCMS Servers Disk and essentially contains a local copy
of the resources stored in MCMS repository on the SQL Server. Therefore the use of the
disk cache allows MCMS to retrieve resources without resorting to a network call to the
SQL Server. To completely eliminate frequent calls to the database, you should increase
the size of the disk cache so that it can contain most, if not all, of your MCMS managed
resources; you can do this through the SCA.

Performance Tip: If the server’s disk cache directory is installed on the same drive as
Microsoft Windows, consider moving the Internet Information Services (IIS) log files
from the default location in the Windows directory to another drive. This prevents log
files from accumulating and causing problems with the ability to cache data or move the
disk cache directory to another drive.

Caching concerns
There are several factors that can affect caching, including the following:

• The amount of memory on your MCMS and SQL servers. Windows 2000
Advanced Servers can accommodate up to 4GB of RAM; increasing memory can be
the fastest, easiest, and least expensive way to increase performance.

• The distribution of page hits (what percentage of all hits go to the most
frequently hit pages). Usage profiles and site traffic analysis can help you
determine which pages generate the most traffic. For best performance, ensure that
output cache can store the Web pages that account for 90 percent or more of total
requests.

• The rate at which content needs to be updated (and the output and node
caches need to be flushed). For more information on content updates, see the
following section.

Those pages that cannot be served from output and fragment cache must be assembled
by the node and disk caches. Ideally, MCSM servers should only access the SQL
database during content updates.

Scaling up
As noted earlier, assembling MCMS pages is a processor-intense activity. Because in a
well-tuned system the processor will be the limiting factor, you can improve throughput
for an MCMS server by adding more CPUs.

However, please note that doubling the number of CPUs will not double the throughput
of the server. As you can see from the results below, throughput does not increase
linearly as CPUs are added. In many instances, it is better to cluster two four-processor
machines together rather than using a single eight-processor machine. (See the
“Scaling out” section, below.)

Note that this chart shows the normalized throughput for .NET pages and cached .NET
pages. That is, the throughput numbers have been adjusted so that for both the cached
and uncached results, the throughput value for one processor is 1. However, in reality
cached pages serve much faster; for the results this chart is based on, the throughput
for cached pages was over 7 times faster than for uncached pages for a single
processor. For 8 processors, the difference was almost 5 times.

Scaling out
Scaling out refers to increasing the number of MCMS servers or server clusters available
to respond to large numbers of page requests. Scaling out also provides redundancy to
handle load if one or more
servers goes down.

Scaling out at the MCMS level
is achieved by load balancing
across one or more MCMS
clusters. You can use either a
hardware load balancer (HLB)
or a software load balancer
such as Windows Network Load
Balancer (NLB).

Whether you use HLB or NLB is
your choice, but they may have
different performance
characteristics. For most sites,
a software load balancer may
be adequate. However, for very

high throughput sites, you may want to evaluate using HLB.

We recommend that for extremely high performance sites, such as those serving out
greater than 300 pages per second across a cluster with four or more MCMS servers, a
hardware load balancer be used. However, most sites do not reach such high
throughput levels, and when the Web servers are used in a load balanced configuration,
the costs distribute evenly. The diagram below shows the throughput scales linearly as
you increase the number of machines within the configuration. No one Web server runs
in a more expensive mode to handle the work even as the load increases.

Content updates
Posting new material to your Web site is, of course, one of the most important
functions. But content updates can pose a problem for any content management
product because they require sometimes extensive updating of a large pool of
information and ensuring that outdated content is not still offered by the Web site.

When new content is posted to Content Management Server, one of the main effects is
to flush those parts of the output and node caches that have been updated. This
ensures that outdated content will not remain in cache and get served up accidentally.
However, flushing the caches comes with a temporary but substantial performance hit,
as new pages cannot be served up out of cache until the cache is rebuilt. Cache is
rebuilt from the updated disk cache as the new pages are requested; therefore the new
pages take longer to serve because they must be assembled first.

The solution to this problem is to batch content updates as much as possible, instead of
posting new content to the site as it comes available. The frequency of new content
batches will depend on your business requirements for the site: how urgent is it that
the new content be posted?

Background processing
Background processing removes expired content; that is, content which is past its
publication interval. It also removes any dangling resource data that is already deleted.
Background processing refers to the task of deleting old and expired pages from the
database to reduce database growth and increase efficiency.

Background processing has been improved in MCMS 2002 to run at the SQL layer
instead of at the MCMS server, which means that your MCMS server is not affected
during processing. This means that any cached pages, whether in the output and
fragment caches or the data in MCMS node cache, will continue to be served out.

However, there is still a potential performance hit for MCMS. If the item is not in the
cache, the server must go back to the database to retrieve the page content. Database
performance will decline during background processing. Therefore, as a general rule
you should schedule background processing for non-peak times to reduce the chance
that it will affect your site performance.

Network latency
Network latency, the delay in retrieving information from another machine due to
network hops, or bandwidth, can impact the performance of MCMS. In general, ensure
that the network latency to any external connections such as SQL Servers and Active
Directory Servers is kept to a minimum.

One way to minimize network latency is to ensure that the Web server is placed on the
same switch as the database servers. Other network management parameters may be
adjusted as well; however, as network management is beyond the scope of this paper,
they will not be discussed here.

Caution: If you must change these network parameters in testing or in a live site,
change only one setting at a time and compare the new results carefully with the old.
Careless changes to the parameters will make administration and management difficult.

Managing IIS
Content Management Server incorporates Internet Information Server to serve up Web
pages. IIS can therefore be the site of some performance tuning.

To increase the performance of IIS when running a runtime only site, you can remove
the Resolution HTML packager ISAPI filter in the rehtmlpackager.dll file from the MCMS
server. This filter is used to display differences between versions of a document in
MCMS. Therefore, removal of this filter will not affect MCMS functionality in serving out
pages on a read-only site. You can realize a performance improvement of
approximately 10 percent after removal of this filter.

To remove the ISAPI filter, open IIS and go to Web Sites. Right click Properties ->
ISAPI filters and select Resolution HTML Packager ISAPI filter. Then click Remove.

There are several other ways you can tune IIS to obtain the best performance:

• You can set the IIS process isolation level to improve throughput.

• You can set the IIS Request/day slider on the IIS Server Properties window to the
amount of traffic expected.

• You can configure IIS to be optimized for performance.

These options are all available through Internet Services Manager. Please consult the
documentation for IIS for more information.

Managing SQL Server
For SQL Servers, typically the most important tuning option is setting up the physical
disk subsystem. For optimal performance, the databases should be separated from their
transaction logs on different physical drives to prevent resource conflicts. All of the
databases, the transaction logs, and the TempDB should be set up so that each
individual disk subsystem is not the bottleneck. You should carefully correlate the disk
costs with the transactions in order to plan for increased disk requirements.

The SQL disk or CPU is seldom a bottleneck with read-only sites. However read/write
sites with a lot of authoring will often cause the SQL server to become the bottleneck.
See the “Design-time performance” section below.

SQL Server also takes advantage of large amounts of physical memory, so the amount
of RAM available should be weighted against the working set of the database. During
run-time, the network IO and the processing load on the SQL Server is a direct function
of the number of front-end servers accessing the SQL Server database as well as the
profile of the load.

Should none of the MCMS caches (output or fragment, node, or disk cache) contain the
requested content, a request will be sent the SQL Server. By default SQL tries to store
frequently accessed data in RAM. This cache grows to consume all available memory
on the SQL server without using virtual memory. As such, SQL Server should have
sufficient memory for best performance. This will limit disk access as much as possible.
For more information about SQL Server performance tuning, go to
http://go.microsoft.com/fwlink/?LinkId=9512.

Design-time performance
The usage pattern of a typical web site consists of a large number of subscribers
viewing web pages from the site while a small number of authors update content rather
infrequently. Content Management Server is primarily designed to handle these typical
web site usage patterns, consisting of large number of read requests with a smaller
number of write operations.

Nevertheless, the performance can be affected due to database contentions between
read operations from Web site user requests and write operations from the updates to
the content. To avoid performance impacts, you should separate the site into a
production tier consisting primarily of read operations and an authoring tier consisting
primarily of updates and search operations.

MCMS is designed to handle the design-time throughput of a typical organization. It can
handle a reasonably large number of authors (25-100) each updating small number of
postings (~10) per day. However, the performance of MCMS will suffer under a high
load of concurrent update operations where the interval between updates is small.

MCMS can also handle a single continuous data feed such as one coming from a live
news source. However, MCMS performance will suffer where a live source is coupled
with authored content updates.

Design-time performance of MCMS is largely independent of the size of the database as
shown below:

Site architecture and management
Site architecture can have considerable impact on performance. Site architecture
includes the network configuration of the site and the design of the internal data
structures that Content Management Server uses.

Dedicated hardware
To avoid competition for resources among applications, it is important that you keep
MCMS on dedicated servers. SQL Servers should be installed on their own machines as
well. This will avoid the applications and services competing for CPU and memory.

Also be sure to perform transaction cost analysis (TCA) on your site before you deploy
to fully understand the hardware and network bandwidth requirements for your
deployment. See the white paper on Transaction Cost Analysis and Capacity Planning
for MCMS for details.

Container hierarchy
There are two types of containers in the MCMS object model: channels and galleries.
Channels contain pages and determine the site structure. Channels also allow you to
control which users can view, edit, and approve those pages. Galleries contain
templates or resources such as images. Galleries allow you to organize these objects in
the database as you might files in a directory structure, and also allow you to control
user access to these objects.

You can establish quite complex container hierarchies to capture both the site structure
and the user rights required to control the site content. However, large container
hierarchies carry their own performance cost. Therefore, it is best to limit the depth of
container hierarchy as seen by results in the table below:

• Root Channel containers: Limit the number of containers under the root node.
(For example, channels should not have more than 10 to 15 immediate children
containers.)

• Items in a container: Limit the items in a container to less than 300. You can do
this by distributing items over multiple containers, to ensure that the number of
items in each container does not exceed 300.

Resource management
Resources such as images, sound clips, and video clips can have a large impact on your
Web site’s performance. As a general rule, the use of large resources should be
avoided. Compress resources whenever possible. For example, for pictures, use .jpg
images instead of .bmp images.

A managed resource is one that is stored in an MCMS resource gallery item and can be
shared by all pages. An unmanaged resource is a resource that is referenced through a
URL and may be part of the template itself.

Because unmanaged resources are not part of MCMS, you can achieve performance
improvements by using them. However, this can mean a trade-off between
manageability and performance.

Site partitioning
For the very largest sites, scaling up, scaling out, and following performance best
practices may not be enough to deliver the desired performance. Once a site exceeds a
certain size, it can no longer be cached effectively on a single MCMS server, and you
may have to partition it into two or more sites.

Consider a very large hypothetical site with 20,000 frequently accessed pages.
Depending on the size of the individual pages, an MCMS server that has already been
scaled up to the maximum memory of 4 GB RAM might still be able to cache only
10,000 pages. This will leave 10,000 pages to be served from the disk cache or the
database, slowing performance significantly. Scaling out by adding more MCMS servers
to the cluster or more clusters to the site will not help, and the individual servers
cannot be scaled up because they already have the maximum memory supported by
Windows.

However, two smaller sites, each containing 10,000 of the most frequently accessed
pages, will be able to keep all their pages in output or fragment cache, which will
improve performance accordingly.

Best Practice: Very large MCMS sites that contain many postings should consider
whether it is possible to partition the site into a series of smaller sites to get optimum
performance. These smaller sites can each have their own MCMS database or can share
a single MCMS database. Separate databases for each site can also deliver some
performance gain when accessing content from the SQL Server as the database size of
each individual site is smaller than the database size of the combined sites. However,
the key performance benefits will come from maximizing the number of pages that can
be stored in cache.

Site security
Secure Sockets Layer (SSL) is the security protocol used to secure Web sites. SSL is a
connection-layer protocol. It works by establishing a secure connection between the
client computer and the server and encrypting all data passing through that connection.
This secure connection permits the transmission of sensitive data in both directions,
and is often used for e-commerce sites and extranets which feature private information.

Because SSL connections require complex cryptographic functions to encrypt and
decrypt data, their use will impact the performance of your application. The largest
performance hit occurs during the initial connection, called the handshake, where
asymmetric (public key) cryptography is used. Once the handshake establishes a
shared session key between the server and the browser, faster symmetric encryption is
used for bulk encryption of all data over the connection. Therefore, the performance
cost includes both the large one-time cost of the handshake and the incremental extra
cost to encrypt each message passed after the handshake.

To optimize pages that use SSL, reduce the amount of data that must be encrypted by
using less text and simple graphics. If an SSL session lasts longer than the limit set by
the server, it will time out and a new session will have to be established, complete with
handshake. To avoid having to repeat the handshake, you should fine tune the session
time by increasing the value of the ServerCacheTime registry entry. The session length

should be set to accommodate any reasonable session length, based on your user
profile.

For more information, see article Q247658, “Building Secure ASP.NET Applications:
Authentication, Authorization, and Secure Communication” in the Microsoft Knowledge
Base.

Custom property searches
Custom properties are user-defined properties that allow developers to define their own
metadata for a page or channel. Custom properties allow site developers to create
summaries of pages and channel content, cross reference pages to channels, and
categorize pages and channels based on their content. By defining custom properties in
templates and using them in the pages, site content can be managed programmatically
in very sophisticated ways.

Custom property searches, of course, have a processing cost. As the chart below
indicates, searches of low to moderate scope will not significantly impact performance.
However, as the number of postings searched exceeds 500, the processing cost on the
MCMS server results in a decline in throughput. As the number of postings searched
reaches a critical point, the search will begin to affect the SQL database as well. While
this point will vary depending on the structure of your site, testing indicates that
searches of 5000 or more postings will create a bottleneck at the database as the CPU
capacity of the SQL server is reached. Performance will, of course, suffer greatly.

To prevent custom property searches from impacting performance, therefore, limit the
number searches performed and their scope in terms of total postings searched.

Troubleshooting
Careful planning and design can eliminate most performance bottlenecks before they
ever occur. However, you may find during site testing or in actual production that
performance issues arise, and you may have to fine-tune your site. This troubleshooting
section outlines some tips and tools that will help to diagnose the problem and suggest
potential fixes.

Testing your site
Site testing is an important step that can identify performance issues before your Web
site goes live. To get the best results, follow the guidelines below. Your test
environment should resemble your production environment as closely as possible. This
ensures that the data you collect from the test environment is accurate.

Create and measure test performance

Creating and measuring test performance involves three stages. First, determine the
site usage profile. Second, use the usage profile data to create a test script using the
Microsoft Application Center Test (ACT) or Web Application Stress (WAS) tool. Third,
measure throughput and response time of the site.

Create a usage profile of the site. When measuring and testing site performance,
you must consider what the business is trying to achieve, user behavior on the site, and
the number of site visitors who will be served. These considerations will help you
understand the usage profile of your site. Create a list of transactions that will be
performed on the site and the frequency with which they will be performed so you can
measure the site performance baseline.

For more information about usage profiles, see “Creating a Usage Profile for Site
Capacity Planning” http://go.microsoft.com/fwlink/?LinkId=9508 . This article
provides instructions for creating a usage profile.

Use the usage profile data to create a test script by using the ACT tool. The ACT
tool is used to test the stress and endurance of the site. During stress testing, a high
load is placed on the server for a period of time. A high load is defined as one that uses
85 to 90 percent of the server capacity. A normal load is defined as one that uses 50
percent of the server capacity. In endurance testing, normal load levels are run over an
extended period of time.

Measure the throughput and response time of the site. Throughput is an
important measurement in identifying performance bottlenecks and improving system
performance. Throughput refers to the number of client requests processed within a
certain unit of time. Typically, the unit of measurement is requests per second or pages
per second.

For more information about throughput, see “Understanding Performance Testing”
http://go.microsoft.com/fwlink/?LinkId=9511.

Transaction Cost Analysis

You can use Transaction Cost Analysis (TCA) methodology to aid in capacity planning
and to detect performance bottlenecks. For more information about TCA concepts and

methodologies, see the white paper “Transaction Cost Analysis and Capacity Planning
for MCMS 2002”.

Performance counters
Content Management Server 2002 has a series of performance counters that can
provide certain information about how your MCMS Web site is functioning. Individual
counters can be indicators of specific issues but generally they must be used in
conjunction with other counters or MCMS information in order to remedy the problem.

The following is the complete list of performance counters provided in MCMS 2002:

Counter Counts Description

Active Enterprise
(AE) Node objects

Number of active
MCMS COM objects
on the server

These are the COM nodes created as each
request is processed. Each request will
generate many COM objects in the AE
Server object, which are then destroyed as
the processing completes. This counter is a
snapshot of the number of COM objects
active at any one time and is a reflection of
the amount of processing activity within the
MCMS Server.

In itself this does not provide a direct
gauge of performance, however high values
would demonstrate a very active MCMS
site. If the site is underperforming this
value can be decreased by using techniques
such as caching the navigation controls,
which in turn could improve performance.

AE Node objects
created/sec

Number of AE
node objects
created per second

As above, but this provides the average
activity over time.

Guest sessions Number of guest
sessions on the
server

This is the number of current connections
to the MCMS server that are authenticated
as a Guest user.

This is more for informational purposes
than to adjust performance, although it
could be used to identify peaks of activity.

Guest sessions
opened/sec

Number of guest
sessions opened
per second

As above, but this provides the average
activity over time.

Authenticated
sessions

Number of
authenticated
sessions connected
to server

This is the number of current authenticated
connections to the MCMS server.

This is more for informational purposes
than to adjust performance, although it
could be used to identify peaks of activity.

Authenticated
sessions
opened/sec

Number of
authenticated
sessions opened
per second

As above, but this provides the average
activity over time.

Edit sessions Authoring or
development
sessions connected
to server

This is the number of current authenticated
connections to the MCMS server that are in
Edit mode.

This is more for informational purposes
than to adjust performance, although it
could be used to identify peaks of activity.
Edit activity on an MCMS sever can have a
significant impact on performance.

Edit sessions
opened/sec

Number of
authoring or
development
sessions opened
per second

As above, but this provides the average
activity over time.

ISAPI sessions Number of
Internet Server
API (ISAPI)
sessions opened
by server

Provides the number of connections
currently in the MCMS ISAPI filter
performing URL transformations. If you
have a high number of these, it may mean
that the URL transformation is taking a long
time, which may be adjusted by increasing
the node cache size.

ISAPI sessions
opened/sec

Number of ISAPI
sessions opened
per second

Tells you how many connections are opened
per second in the MCMS ISAPI filter.
Provides the number of URL requests to
MCMS per second.

Master cache
nodes

Number of items in
internal MCMS
master cache

Number of nodes in master cache. This is
limited by the node cache size set in the
SCA. If this value is less than the setting in
the SCA then this is an indication that all
requested MCMS nodes are currently
cached. If this value is close to or above the
value in the SCA, then this is an indication
that the setting in the SCA is not high
enough to allow all requested nodes to be
cached.

Shared nodes Number of
items/nodes
referenced by
server, including
master cache
items

This value is related to the number of
master cache nodes; however this value
will reflect multiple versions, e.g. checked
in and checked out, of the same master
node.

Shared nodes Shared nodes This is a reflection of the increase in size of

created/sec created per second the node cache as new nodes are cached.

If the master node cache value is close to
or above the value in the SCA and this
value is high, then this is a clear indication
that objects are being moved in and out of
cache which will lower performance.

Cache hits/sec Rate of cache hits
on master cache

A high value here relative to the value
below implies an effective use of cache.

Cache misses/sec Rate of cache
misses on master
cache

A high value here relative to the value
above implies an inefficient cache setting.

Data access
operations/sec

Number of data
access operations
executed per
second

This is the count of accesses to the SQL
Server database. A high value could imply
one of several things: the node cache value
may be too small; the resource cache may
be too small; or there is a need to cache
search results.

Exceptions thrown Number of
exceptions thrown
by server

This is informational and provides a count
of exceptions thrown. If this is increasing
rapidly over time it could indicate problems
on the server or in the code base.

Number of MCMS
connections

Number of open
MCMS application
connections

This is informational and provides an
indication of the load on the MCMS server.
It includes all current connections to the
MCMS server at a point in time. It includes
the ISAPI connections plus all other
connections.

Diagnosis
The performance counters can provide your first strong clues as to where the trouble
lies. You can further narrow down the causes by experimenting with system variables or
design choices. When doing so, it is important that you test one variable at a time. You
can use the performance counters, system logs, event logs, and so forth to track the
results of your changes.

The first step in diagnosing performance issues is to confirm whether it is a MCMS issue
on an external issue. For example, if you have another ISAPI filter that preprocesses
requests before MCMS receives them, measure the latency of both.

Once you have determined that the bottleneck occurs after the request reaches MCMS,
examine the internal and external placeholders. For example, if there are placeholders
that are Web services or pointers to external content or applications, examine the
latency of those applications independently and then in conjunction with MCMS.

When you run into issues that can be traced back to the template, be sure to further
investigate the problem by examining one variable at a time. For instance, there are

usually several controls on a page. If you cannot identify the source by inspecting the
code, test the template by removing one control at a time. You may need to make
adjustments to account for any connected contents, but this procedure will give you a
good general idea of which control is the root cause of the performance issue.

Server
If the server seems slow in response or is rejecting requests, review the performance
counters and check the number of connections being made and the current number of
connections.

If you do not detect any trouble there, you may be experiencing slowdown due to
tables being locked in the SQL database. This could be occurring due to site
deployment (SD) or background processing. Check the scheduling for background
processing or check for SD logs being created. It is important to schedule these at low
site volume times.

Troubleshooting Matrix
The table below lists a number of issues and their possible causes and solutions.

Behavior Solution

Rate of cache misses is high Examine size and balance of caches. Ensure that
output cache directives are correct and the
durations are appropriate.

Rate of cache misses is high +
data access operations are high

Adjust your cache settings and usage. This could
also be the result of large searches—try caching the
most common searches.

Rate of cache misses is high +
number of master node cache
items is high

Increase the size of the master node cache—ideally
your peak node cache requirements should be
around 80% of allocated node cache size to allow
for shared nodes. You can also use this in
conjunction with the ASP.NET performance counters
for the output cache to trace the caching of data
before MCMS.

Number of exceptions thrown by
server is high

Check the event log.

Also, examine the number of authenticated sessions versus the number of guest
sessions to measure how much each of these costs. If the number of authenticated
sessions has a large impact, examine site authentication protocol. See “Authentication”
above for more details.

Test Platform
Throughout this white paper, charts and results have been presented based on testing
done by Microsoft. This testing was done using the following test configuration, except
in scale-up tests:

CMS Server Compaq Proliant DL 380

2 x PIII Processor @ 1200 MHz

1 GB Memory

Compaq NC3163 Fast Ethernet NIC

Windows 2000 SP3 Advanced Server

IISLockdown installed

CMS using read-only mixed mode setup

Database Server Compaq Proliant DL 580

4 x PIII Xeon Processors @ 700 MHz

1 GB Memory

Intel PRO 10/100 Adapter

Windows 2000 SP2 Advanced Server

SQL 2000 SP3

Client Machines Sufficient ACT Clients

Network Switched Network on Cisco 2948G Fiber
Switch

Dual proc PIII AD DC

For more information:
http://www.microsoft.com/cmserver.

